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Abstract. A solution for the interior metric of a sphere has been obtained with the effective 
mass density as a variable quantity. 

1. Introduction 

Whittaker (1935) has pointed out that the effective mass density governing gravitational 
attraction is not p but p+3p/cz  where p is the mass density and p is the pressure. 
Whittaker (1968) solved Einstein’s field equations for the interior metric of a fluid 
sphere assuming p+ 3p/cz to be a constant. However a more general case will involve 
a form of this quantity varying with the radial coordinate. Here we have obtained a 
nonsingular solution of Einstein’s field equations for the interior metric of a fluid sphere 
with a variable form of the effective mass density. We have assumed here that the metric 
coefficient b = f ( r )  = #,rz  + k ,  where - b = g, ,  so that p + 3p/cz varies with radial 
coordinate. 

2. The field equations and their solutions 

We assume a metric of the form 

ds2 = a(r) dr2 + r2(dOz +sin% d@) - b(r)c2 dt’. 

The equations to be satisfied are then (Msller 1952, p 329) 

9 + ( p c 2 + p ) -  b’ = 0 
dr 2b 

b‘ 1 
abr r2  (1 -;)+A = kP ( 3 )  

where A is the cosmological constant and the prime denotes differentiation with respect 
to r. In the following solutions we have taken A = 0 and k = 8x .  Now we assume 

b = fk , r2+kz ( 5 )  
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where k ,  and k ,  are constants. Adding equations ( 3 )  and (4)  we get 

1 a' b' 
8nar ( a  b ) pc2+p = - -+- . 

The equation (6) can be rewritten as 

)+ 2P 

since 

1 b" 
r b' 
--- = 

from the assumption (5).  Now, from equation ( 2 )  using equation (7) we get 

which on integration leads to 

p = l ( E ) + k ,  16n abr 

where k ,  is the constant of integration. From equation (3) using equations ( 5 )  and (8)  
we get 

k,r2 + k ,  
( 1  + 8nk,r2)(4klr2 + k,)' 

a =  (9) 

Hence from equation ( 8 )  using the values of a and b from equations (9)  and ( 5 )  respectively, 
we get 

1 1+8nk3r2 p = -  
16n r2 + ( k 2 / k l ) + k 3  

and from equation (4)  using equation ( 9 )  we get 

- 1 2 n k ~ k , r 4 + ( ~ k ~ - 2 8 n k l k , k , ) r 2 + ( ~ k l k , - 2 4 n k ~ k , )  
( k l r2  + k,), 

From equations (10) and (1 1 )  we obtain pc2 + 3 p  as a variable quantity : 

1 48nk:k,r4 +(4k: + 64nklk,k,)rZ + 6k1k2 ( ( k l r2  + k J 2  1672 
pc2+3p = - 

Since at the boundary p = 0 we have from equation (10) 

where r l  is the boundary. To make r ,  real, k ,  should be negative and k ,  > 16n1k3lk,. 
With the above conditions pc', p and pc2 + 3p are all positive. 
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3. 

The values at the centre of the sphere are 

3 kl  p0c2 = - --3k3 
16n k ,  

3 k l  
p0Cz + 3p0 = - -. 

8n  k ,  

(15)  

Hence from above it shows that pocz, p o  and poc2 + 3p0 are all positive. Hence from 
equations (14) and (15)  since k ,  is negative 

p0c2 > 3p0. (17) 

4. 

Now, for the exterior solution, we know (Merller 1952, p 326) 

1 2m 
b(r)  = - = 1---. 

a(r) r 

As a(r)  and b(r) must be continuous and ab = 1 for the exterior solution, we have using 
equations (5)  and (9) ,  

k , r f  + k ,  
1 =  

1 + 8nk3rf 
from which we get 

[(2k 1 - k 1 k,)’ + 8 k: k,] 1’2 - (2  k - k k,) 
32nk2 

k , =  - 

This value of k ,  makes r l  real and the condition k ,  > 16n1k3(k, is satisfied, provided 
1 > k ,  =- 0. Hence from equations ( 1 8 )  and (19), 

2m 
- = +klr f - -8nk3r f .  
r l  

I t  shows that m is positive since k ,  is negative. I t  can also be shown that equation (21)  
can be expressed in terms of pressure and density as follows 

where bo is the value of b at r = 0. 
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