An internal solution in general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 71884
(http://iopscience.iop.org/0301-0015/7/15/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:53

Please note that terms and conditions apply.

An internal solution in general relativity

K D Krori \dagger, S N Guha Thakurta \ddagger and B B Paul§
\dagger Cotton College, Gauhati, Assam, India
\ddagger Lady Keane College, Shillong, Meghalaya, India
§ Nowgong College, Nowgong, Assam, India

Received 9 April 1974

Abstract

A solution for the interior metric of a sphere has been obtained with the effective mass density as a variable quantity.

1. Introduction

Whittaker (1935) has pointed out that the effective mass density governing gravitational attraction is not ρ but $\rho+3 p / c^{2}$ where ρ is the mass density and p is the pressure. Whittaker (1968) solved Einstein's field equations for the interior metric of a fluid sphere assuming $\rho+3 p / c^{2}$ to be a constant. However a more general case will involve a form of this quantity varying with the radial coordinate. Here we have obtained a nonsingular solution of Einstein's field equations for the interior metric of a fluid sphere with a variable form of the effective mass density. We have assumed here that the metric coefficient $b=f(r)=\frac{1}{2} k_{1} r^{2}+k_{2}$ where $-b=g_{44}$ so that $\rho+3 p / c^{2}$ varies with radial coordinate.

2. The field equations and their solutions

We assume a metric of the form

$$
\begin{equation*}
\mathrm{d} s^{2}=a(r) \mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)-b(r) c^{2} \mathrm{~d} t^{2} \tag{1}
\end{equation*}
$$

The equations to be satisfied are then (Møller 1952, p 329)

$$
\begin{align*}
& \frac{\mathrm{d} p}{\mathrm{~d} r}+\left(\rho c^{2}+p\right) \frac{b^{\prime}}{2 b}=0 \tag{2}\\
& \frac{b^{\prime}}{a b r}-\frac{1}{r^{2}}\left(1-\frac{1}{a}\right)+\Lambda=k p \tag{3}\\
& \frac{a^{\prime}}{a^{2} r}+\frac{1}{r^{2}}\left(1-\frac{1}{a}\right)-\Lambda=k \rho c^{2} \tag{4}
\end{align*}
$$

where Λ is the cosmological constant and the prime denotes differentiation with respect to r. In the following solutions we have taken $\Lambda=0$ and $k=8 \pi$. Now we assume

$$
\begin{equation*}
b=\frac{1}{2} k_{1} r^{2}+k_{2} \tag{5}
\end{equation*}
$$

where k_{1} and k_{2} are constants. Adding equations (3) and (4) we get

$$
\begin{equation*}
\rho c^{2}+p=\frac{1}{8 \pi a r}\left(\frac{a^{\prime}}{a}+\frac{b^{\prime}}{b}\right) \tag{6}
\end{equation*}
$$

The equation (6) can be rewritten as

$$
\begin{equation*}
\rho c^{2}+3 p=\frac{1}{8 \pi a r}\left(\frac{a^{\prime}}{a}+\frac{b^{\prime}}{b}+\frac{1}{r}-\frac{b^{\prime \prime}}{b^{\prime}}\right)+2 p \tag{7}
\end{equation*}
$$

since

$$
\frac{1}{r}-\frac{b^{\prime \prime}}{b^{\prime}}=0
$$

from the assumption (5). Now, from equation (2) using equation (7) we get

$$
\frac{\mathrm{d} p}{\mathrm{~d} r}+\left[\frac{1}{8 \pi a r}\left(\frac{a^{\prime}}{a}+\frac{b^{\prime}}{b}+\frac{1}{r}-\frac{b^{\prime \prime}}{b^{\prime}}\right)\right] \frac{b^{\prime}}{2 b}=0
$$

which on integration leads to

$$
\begin{equation*}
p=\frac{1}{16 \pi}\left(\frac{b^{\prime}}{a b r}\right)+k_{3} \tag{8}
\end{equation*}
$$

where k_{3} is the constant of integration. From equation (3) using equations (5) and (8) we get

$$
\begin{equation*}
a=\frac{k_{1} r^{2}+k_{2}}{\left(1+8 \pi k_{3} r^{2}\right)\left(\frac{1}{2} k_{1} r^{2}+k_{2}\right)} . \tag{9}
\end{equation*}
$$

Hence from equation (8) using the values of a and b from equations (9) and (5) respectively, we get

$$
\begin{equation*}
p=\frac{1}{16 \pi} \frac{1+8 \pi k_{3} r^{2}}{r^{2}+\left(k_{2} / k_{1}\right)}+k_{3} \tag{10}
\end{equation*}
$$

and from equation (4) using equation (9) we get

$$
\begin{equation*}
\rho c^{2}=\frac{1}{8 \pi}\left(\frac{-12 \pi k_{1}^{2} k_{3} r^{4}+\left(\frac{1}{2} k_{1}^{2}-28 \pi k_{1} k_{2} k_{3}\right) r^{2}+\left(\frac{3}{2} k_{1} k_{2}-24 \pi k_{2}^{2} k_{3}\right)}{\left(k_{1} r^{2}+k_{2}\right)^{2}}\right) . \tag{11}
\end{equation*}
$$

From equations (10) and (11) we obtain $\rho c^{2}+3 p$ as a variable quantity:

$$
\begin{equation*}
\rho c^{2}+3 p=\frac{1}{16 \pi}\left(\frac{48 \pi k_{1}^{2} k_{3} r^{4}+\left(4 k_{1}^{2}+64 \pi k_{1} k_{2} k_{3}\right) r^{2}+6 k_{1} k_{2}}{\left(k_{1} r^{2}+k_{2}\right)^{2}}\right) . \tag{12}
\end{equation*}
$$

Since at the boundary $p=0$ we have from equation (10)

$$
\begin{equation*}
r_{1}=\left(\frac{-\left(16 \pi k_{2} k_{3}+k_{1}\right)}{24 \pi k_{1} k_{3}}\right)^{1 / 2} \tag{13}
\end{equation*}
$$

where r_{1} is the boundary. To make r_{1} real, k_{3} should be negative and $k_{1}>16 \pi\left|k_{3}\right| k_{2}$. With the above conditions $\rho c^{2}, p$ and $\rho c^{2}+3 p$ are all positive.

3.

The values at the centre of the sphere are

$$
\begin{align*}
& p_{0}=\frac{1}{16 \pi} \frac{k_{1}}{k_{2}}+k_{3} \tag{14}\\
& \rho_{0} c^{2}=\frac{3}{16 \pi} \frac{k_{1}}{k_{2}}-3 k_{3} \tag{15}\\
& \rho_{0} c^{2}+3 p_{0}=\frac{3}{8 \pi} \frac{k_{1}}{k_{2}} . \tag{16}
\end{align*}
$$

Hence from above it shows that $\rho_{0} c^{2}, p_{0}$ and $\rho_{0} c^{2}+3 p_{0}$ are all positive. Hence from equations (14) and (15) since k_{3} is negative

$$
\begin{equation*}
\rho_{0} c^{2}>3 p_{0} \tag{17}
\end{equation*}
$$

4.

Now, for the exterior solution, we know (Møller 1952, p 326)

$$
\begin{equation*}
b(r)=\frac{1}{a(r)}=1-\frac{2 m}{r} . \tag{18}
\end{equation*}
$$

As $a(r)$ and $b(r)$ must be continuous and $a b=1$ for the exterior solution, we have using equations (5) and (9),

$$
\begin{equation*}
1=\frac{k_{1} r_{1}^{2}+k_{2}}{1+8 \pi k_{3} r_{1}^{2}} \tag{19}
\end{equation*}
$$

from which we get

$$
\begin{equation*}
k_{3}=-\left(\frac{\left[\left(2 k_{1}-k_{1} k_{2}\right)^{2}+8 k_{1}^{2} k_{2}\right]^{1 / 2}-\left(2 k_{1}-k_{1} k_{2}\right)}{32 \pi k_{2}}\right) . \tag{20}
\end{equation*}
$$

This value of k_{3} makes r_{1} real and the condition $k_{1}>16 \pi\left|k_{3}\right| k_{2}$ is satisfied, provided $1>k_{2}>0$. Hence from equations (18) and (19),

$$
\begin{equation*}
\frac{2 m}{r_{1}}=\frac{1}{2} k_{1} r_{1}^{2}-8 \pi k_{3} r_{1}^{2} \tag{21}
\end{equation*}
$$

It shows that m is positive since k_{3} is negative. It can also be shown that equation (21) can be expressed in terms of pressure and density as follows

$$
\begin{equation*}
\frac{2 m}{r_{1}}=8 \pi r_{1}^{2}\left\{b_{0} p_{0}-\left[\frac{2}{3} p_{0}-\frac{1}{6}\left(\rho_{0} c^{2}+p_{0}\right)\right]\left(b_{0}+1\right)\right\} \tag{22}
\end{equation*}
$$

where b_{0} is the value of b at $r=0$.

References

